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The effective medium theory has been applied to calculate the transverse magneto-
resistance of random polycrystalline copper on the basis of the known Fermi surface,
in order to explain the nearly linear variation of resistance with magnetic field up to
very high values. Ziman’s (1958) conjecture that the conductivity tensor should be
averaged over all orientations is shown to be a good first approximation, though it does
suggest that the resistance should have been observed to approach saturation in some
experiments, when the open orbits might play a dominant role at large values of w¢7.
The effective medium theory, by raising the saturation level considerably, eliminates
this difficulty. The conductivity due to open and highly extended orbits, when calcu-
lated by geometrical analysis of the Fermi surface, is found to be quite sufficient to
account for the observed behaviour. Certain residual discrepancies, especially a deficitin
conductivity in very pure samples at large w7, are explained as arising partly from size
effects and small angle scattering, but mainly from the markedly non-random texture
of drawn and annealed wires; it is concluded that there is no reason to doubt that
standard theories of magnetoresistance are capable of interpreting the observations.
Most of the calculations of conductivity due to open and extended orbits are straight-
forward in principle and remarkably insensitive to the least well known parameters
involved, the relaxation time and the angular distribution of scattering, so that the
theoretical predictions are reasonably secure. Only in dealing with the extended orbits
in the vicinity of high symmetry directions are approximations of dubious validity in-
voked, and even they are provided with more or less plausible justification. For the most
part, however, the work represents a drawing together of well established concepts, and
their application to areal Fermi surface rather than to convenient butimprecise approxi-
mate models.
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570 SIR BRIAN PIPPARD

INTRODUCTION

It was noted by Kapitza (1929) that the resistance of many metals in the form of polycrystalline
wires increased in a transverse magnetic field according to an almost linear law. Not having
access to liquid helium at the time, he was hardly able, even with his very strong impulsive fields,
to attain values of w7 greater than unity (we = cyclotron frequency, 7 = relaxation time). The
linear variation at such low values may be explained in terms of rather sharp edges, or narrow
necks, on the Fermi surface which generate corresponding sharp corners in the orbits of electrons,
allowing them to change direction in a small fraction of the cyclotron period, and causing the
quadratic variation at low field strengths to give way to something close to linear (e.g. Pippard
1964). What is surprising about copper is that this linear variation persists up to very high values
of weT, 200 or more, but only in polycrystals; single crystals show either saturation or a roughly
quadratic increase at high fields, according to the orientation of B relative to the crystal axes. The
general features of magnetoresistance in single crystals are well understood, the non-saturating
pattern being ascribed to the presence of electrons in open or, at least, highly extended orbits.
It has, however, remained in doubt whether in a polycrystal whose individual grains show
saturation or quadratic behaviour, the average should automatically be roughly linear, or
whether some other process must be postulated to explain the observations. Various attacks on the
problem have established methods appropriate to a full analysis, and the most that can be
claimed for the present work is that it has drawn on these existing techniques to carry through
the analysis with sufficient (but not excessive) care to the point where it is highly arguable that
nothing extra need be sought in explanation of the larger range of field strength over which the
linear magnetoresistance persists. It will become clear in the final discussion that further elabora-
tion of the theory to place this assertion beyond cavil would be exceedingly laborious.

Theoretical work started with the observation by Ziman (1958) that a Fermi surface consisting
of non-intersecting cylinders lying along [111] directions would exhibit some important features
of the copper Fermi surface, notably that section by planes normal to B would generate highly
elongated orbits. The conductivity of such a system for arbitrary orientation of B is easy to
calculate, and Ziman showed that if one simply averaged the conductivity over all orientations,
Gy, and T, varied as 1/B, B being taken to lie along the z-axis. If 7,,, G,,, etc. vanish, the
transverse resistivity is obtained by inverting the conductivity tensor:

Pay = _xw/(ﬁazcw'l'a-%y)’ (1)
and clearly in this case g,, has the desired variation proportional to B. Ziman made no claim to
have demonstrated the correctness of this averaging procedure, but a plausible (though ultimately
untenable) case may be argued in the following terms. As B is increased, 7,, remains high while
in most crystallites G, and @, fall to low values; it is therefore to be expected that, whatever the
pattern of current flow, E, will be much smaller than E, or E,. If we may take E, as zero, it follows
from the irrotational nature of E that 0E,/0z = 0F, /0z = 0. Now the absence of any variation of
the transverse components of E with z in a polycrystalline medium can only be understood as an
indifference of E to the granularity; E is the same in each grain and consequently the mean value
of the current density is given by the average conductivity:

Gy5 =<0, (2)
the bar being used to denote the observable value for the polycrystalline mass, the angular
brackets denoting the average over all crystal orientations.
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The mechanism underlying Ziman’s conjecture (2) is that the same E sets up in each grain
whatever current the local conductivity demands, and that the discontinuities in the normal
components of J at grain boundaries are responsible for generating currents that flow parallel
to B. The assumption, however, that these parallel currents are non-dissipative will not stand up,
and this is where Ziman’s conjecture fails. Imagine a line drawn parallel to B through the sample,
intersecting many grain boundaries, at each of which a current is generated, sometimes positive,
sometimes negative, with mean value zero. The dissipation due to J, at any point is p,,JZ, or
P Ni2where j2is the mean square value of J, generated ata grain boundary and N is the number
of grain boundaries intersected by the lines. Unfortunately as the size of the sample, and hence N,
is increased this diverges, and it is invalid to assume that dissipation due to J, is negligible.
Although this argument destroys any hope of a really simple treatment along Ziman’s lines, it will
be appreciated that the divergence just revealed is itself the artefact of an oversimplification. The
current jets streaming along the z-direction from each grain boundary do not continue for ever,
but gradually spread out to merge with, and help to cancel, other current jets. The lateral spread
is, however, slow (Herring 1960), and it is not until one moves along B for a distance about
(0,,/04) ¥ as large as a crystallite diameter that one finds any significant merging of currents
from the two sides of a crystallite. It is a highly convenient consequence of this that a given jet
must traverse many neighbouring crystallites before being dissipated, and it is likely to be a very
adequate assumption that the current flow in the vicinity of a given crystallite is much the same
as if it were embedded in a uniform medium having the average properties exhibited by the
polycrystal. This is precisely the model commonly referred to as the effective medium approxi-
mation, whose history and bibliography is very fully dealt with by Landauer (1978). It has been
found successful in applications even where the additional advantage of current jetting is absent,
and there is little doubt of its legitimacy in the present application. The details of the theory have
been presented on several occasions (Stachowiak 1970, Stroud 1975) but not in a form that reveals
readily how to use it in numerical work, as is the aim of the next section.

EFFECTIVE MEDIUM APPROXIMATION

The essence of this approximation is that each crystallite may be regarded as a spherical
inclusion in a uniform medium having the properties that would be determined by measurements
on a polycrystalline aggregate. A field E; applied to the sample generates a current density J; in
the inclusion, whose magnitude and direction are determined by the conductivity tensors of
medium (@;;) and inclusion (o7;). For anyarbitrary choice of ;; and a given distribution function
of o;; for differently oriented crystallites, the mean current, averaged evenly over all crystallite
orientations, is not in general equal to @;; E;, and the problem is to find @;; such that this is the
case. Because @ refers to a random polycrystal, its form is restricted by symmetry considerations;
if B lies along the z-direction, G, = 7,, # Gy, 0y, = — 04, and all other components vanish. In
the individual crystallite no such restrictions apply, but we shall assume that cross terms involving
z, €.g. 0,,, are negligible.

The requirements that curl E and div J both vanish imply that in the medium the potential ¢
obeys the modified Laplace equation, ¢,,+ ¢, +72$,, = 0, where % = 7,,/7,,, and may be
between 5 and 50 in the applications treated here. By introducing a scaled coordinate system in
which all z-dimensions are reduced by a factor 7, the equation may be converted into Laplace’s,
while in this process the spherical inclusion becomes an oblate spheroid (discus) with axial

47-2
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572 SIR BRIAN PIPPARD

ratio 7. A uniform electric field applied in the plane of the discus, the x,7 plane normal to B,
polarizes the inclusion uniformly and generates a uniform field within it, also in the x, y plane,
which in the absence from o;; of cross terms involving z sets up a current also lying in this plane.
It is now necessary to ensure continuity of current across the interface, and we shall
concentrate on the equatorial plane of the discus in the knowledge that if all goes well here the
rest follows automatically.

Ifthe polarization vector within the discus is ;, and the uniform applied field is £, the internal
field is E; — DF, /), where D is the depolarizing coefficient for a spheroid of axial ratio r (Stratton
1041, p. 214):

D = {[rarctan (r—1)3/(r— 1) —1/(r—1)]. (3)

At a point in the equatorial plane where the normal to the surface is defined by the unit vector #;
the surface charge density is #; P; (repeated indices imply summation over x and y only), and
therefore the field just outside the discus is given by E; — DP, /e, +n;(n, ) [¢,. Continuity of the
normal component of current then demands that

n;[o(E;— DP,[e)) — G (E; — DP;[ey+n;n Py feg)] = 0
at all points on the equator. The form of ?iﬁ enables this to be written

”j[(o-ji (E DP/GO Oax ,7/60] = O

and the vanishing of the quantity in square brackets assures the satisfying of the boundary
condition. Hence if f;; is the inverse of the tensor (o;; —@;;) D + @y, 0y, then

xx %]’
By = €f1j(5i—0y) E;.
Given the polarization, the electric fields and currents follow automatically, and the condition

that the average current density in a crystallite shall be 7;; E; takes the form

<0-’L']'18]76> = Eilc/ﬁa:x‘ (4)

This equation, whose solution determines the properties of the polycrystal, takes the form of two
simultaneous equations for the unknown @,, and @,

<[o-wx(5.m + Aayy) - /\Gx (ny - Eyw)]/M> = 1/(1 + A)’ (5)

and <(A0w1/ Opet 0g azy)/M> = Ezy/(l + ’\) [ (6)
in which

A= D/(l - D) and M = (a:ac;c + A(Ta:ac) (Ezz + AGyu) + /\2(0-:1:1/ - a:my)z' (7)

In the present application the second term in A/ may be dropped without significant error,
since A is typically less than 0.15 and o, —@,, < 1,,. Larger errors than this are incurred
elsewhere in the calculations. A more significant simplification, and one that does not involve
approximation, reduces the degrees of freedom involved in averaging over all orientations.
Rotation of a crystallite about B, E being fixed, is equivalent to keeping the crystallite at rest
while rotating E about B as axis. Now the transverse elements of oy, are liable to be highly
anisotropic, since the important crystallites are those supporting highly extended or open orbits.
The same applies to the tensor o}, specifying the current set up within any crystallite by applica-
tion of the external field E;. Now there will be two orthogonal principal directions for E; with
respect to which o, = — o, only the Hall terms being present in the off diagonal elements. If
the diagonal elements are then o and 073, it is easy to show that the mean current, averaged over
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all directions of £; in the plane normal to B, is §(o7 + 073) E parallel to E; and o, E normal to E,.
Thus instead of averaging over all directions of E; for each orientation of B in the crystal lattice,
it is sufficient to take the mean of the contributions of the two principal directions, and ignore all
but the Hall contribution to the off-diagonal elements. Moreover, since the important crystal-
lites are those carrying extended orbits, for which o, may be taken as much greater than o, no
serious error arises from assuming o, to vanish. With these simplifications (5) and (6) take the
following form:

3P+ MOy Py — 2 (1 = APy) [Trp + Qi) [T = 1(1 4 A), (8)
and Py = 0 [1/(1 +A) — 328, ) [C (9)
in which P, ={01/(Cpp+A07)),
Py = (00y/ (Tag+ A04)),
and Quy = {(Tay = Ty)?/ (T + A0y))-

In deriving (9), useis made of the relation {(1/(7,, + Aoy) ) = (1 — AP,,) [T, Itis worth remarking
in this connection that although it enables P,, to be evaluated either as {0 / (G, + Ao,) ) or by way
of (1/(T,, + Aoy)), the former is preferable, in that it is an average which is dominated by those
crystallites having high values of ¢; it will become apparent that these relatively rare crystallites
can be enumerated with much greater ease than the more common type with lower conductivity.

The problem of solving (8) and (9) may now be expressed in terms of finding 7, and @,

such that Py = 2/(L+A) —2X(Qy, /T0a)/ (1 + X252, /52,). (10)

Since the second term is itself very small, and ,, occurs only there, and then as a second order
correction, a good start to the solution involves finding @, such that

Pxx=2/(1+)()3 (11)
and proceeding by substituting this in (9) to determine @, in the form:
— 141, _ 1+A_
ny=mpmy0mx=gﬂ—qu$APmy, (12)

in which AP, is derived from the Hall deficit, Ao, defined as oy — 07, where oy is the Hall
conductivity (ze/B) expected if all the conduction electrons were to move in closed electron-like

orbits. Thus AP, = (A0, /(T + A0y)).

Then the transverse resistivity p,, follows immediately from (1). It is easy enough to correct this
answer for neglect of the second term in (10), but since even in the worst case treated here the
correction changes g,, by only 1 9 we shall not trouble to do so.

The approximation involved in Ziman’s conjecture (2) is now clear: A must be small enough
to be dropped in the evaluation of P,,. In the present application, however, o, /7,, is as large as
5 for a significant proportion of the crystallites that matter, so that A must be much less than 0.1
before a straight average of o, can be tolerated. Values of 7,,/7,,, well over 100 are needed, and
no experiment yet performed attains the required conditions. Nevertheless, Ziman’s conjecture
leads to results that are not wildly astray, and it serves a useful purpose in indicating, as will
appear later, which factors are of minor importance.
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574 SIR BRIAN PIPPARD'

CALCULATION OF CONDUCTIVITY: INTRODUCTION

It is now necessary to derive expressions for o; in those crystallites that contribute most to
P, and AP,,, and we must start with an overall categorization of the orbits in which electrons
can move. This is the point of departure from the analyses of Ziman and of Stachowiak (1970,
1973) who applied their arguments to simplified models of the Fermi surface of copper, thereby
considerably underestimating the prevalence of open and extended orbits, which are of the
highest importance. Since the form of the Fermi surface is known with considerable precision
we shall work from this, using Halse’s (1969) determination or, where convenient, the tabulations
of Powell (1966) which, though not so well based, are good enough for the present purpose. The
periodically extended Fermi surface forms a body-centred cubic array of near-spheres connected
by necks aligned along body diagonals. The centres of the necks themselves form a simple cubic
lattice whose basis will be taken as the unit of length in £ space; since the unit cube holds half an
electron per atom, the free-electron sphere for copper has volume 2 and radius 0.7816. Except for
those special directions of B whose direction cosines are rationally related, a section of this
extended surface by a plane normal to B cuts each repetition of the primitive Fermi surface at a
different level; the orbits revealed by this section reproduce in their frequency of occurrence the
orbits executed by electrons in the field B. It is convenient to imagine a thin plane section, of
thickness 8, cut from the extended surface; an area 4/6 then holds 2 electrons per atom and defines
a volume equal to the Brillouin zone. By enumerating the orbits of a given type lying within this
area, and ascribing to each its conductivity, a correct measure of 0;;;is obtained for this orientation
of B.

The general principles governing the character of the orbits were first enunciated by Lifshitz &
Peschanskii (1958). When B lies close to a high-symmetry direction, the normal plane cuts
through the belly of the Fermi surface in some places, generating simple electron orbits, and
through four necks in others, generating simple hole orbits. The regions of electron and hole
orbits are separated by an aperiodic open orbit whose general direction is the line of intersection
of the plane normal to B and the nearest high-symmetry plane. Thus, as B is tilted away from
[100], the possibility disappears of cutting four necks to generate a hole orbit, and simultaneously
the open orbits vanish. Instead there are left highly extended, but finite, orbits, whose length
steadily decreases as B is moved further away from [100]. Similar behaviour occurs around [110]
and [111], and the characteristics of the pattern are summed up in figure 1, which shows on
a stereographic projection the basic £ of the solid angle enclosed in the spherical triangle defined
by the three principal symmetry directions. The boundaries of the triangle, where the direction
cosines cannot be entirely irrational, need special treatment and are the sites of periodic open
orbits on either side of which lie extended orbits; there is also a line GH of periodic open orbits,
flanked by extended orbits, running through the triangle and defined by a (111) plane.

To proceed to a more quantitative treatment, it is convenient to treat the three principal
symmetry directions separately, though the same process will comprehend [100] and [110]
together, leaving [111] for special attention. Figure 2 shows a plane section normal to [110] with
the Fermi surface section in two cells, but the rest of the periodically extended structure repre-
sented by the rectangular lattice of neck centres; the (110) section has &, = 4/2, £k, = 1 and
successive layers of neck centres are spaced £, apart, with 43 equal to 4/2. Only half the necks
appear; the rest can indeed generate hole and open orbits — the ‘lemons’ described by Halse
(1969) — but in such small amount that we shall neglect them. A similar diagram serves for the
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(100) plane section except that now %, = k, = k3 = 1 and all necks are involved; the Fermi
surface section in this case is also shown in figure 2. Now a plane normal to B (which we shall
refer to as a B plane) can be represented on this diagram by contour lines showing where the
B plane cuts each successive layer of neck-centres. If the orientation of B is defined by (0, ¢) asin
figure 1, the contours are set at ¢, as shown in figure 2, with a spacing of £;cot 0. Wherever a

(111]

ool A B [110]

Ficure 1. Basic unit of stereographic projection, showing (shaded) the directions
of B for which aperiodic open orbits exist.

Frcure 2. Sections of periodically extended Fermi surface by (a) [110] plane and () [100] plane. Only two
replications of the section are shown in each case, together with the lattice formed by the centres of the
necks.

contour passes through a lattice point, the B plane cuts through the very centre of a neck, as does
L in figure 3, and the electron, passing from one cell of the periodic pattern to the next, executes
an orbit that extends over at least two repetitions of the Fermi surface, and more if more necks
are cut by the B plane. A contour passing close to a lattice point may still cut the neck and enable
the electron to pass to the neighbouring cell; but a plane such as N, lying outside the limits MM,
misses the neck and the electron carries on past it, executing a belly orbit all in one cell.

The pattern may be schematized as in figure 4(a). The section of the Fermi surface through the
necks is represented by a rectangle, so that the filled regions of periodically extended £ space on
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576 SIR BRIAN PIPPARD

this plane section appear as shaded areas of a chessboard. An electron is impelled by B along a
line of the pattern, and at each intersection it turns right, following round a shaded area, ifits
B plane does not cut that neck, and left, following round an unshaded area, ifit does. To indicate
which necks are cut we draw horizontal lines (P lines) of length 2P(P = p cosec 0sec ¢) centred on

Ficure 3. Sections of the Fermi surface by planes whose normal lies
in the plane of the diagram.
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each lattice point. It follows from the definition of p in figure 3 that the neck is cut if the contour
cuts the P line. It should be noted that the necks are not in general equivalent and that, for
example, there are four different values of P for the orientations around [100], and two different
values around [110].

A typical contour is drawn in figure 4 (a) and each cut neck marked with a cross. The pattern
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of crosses is transferred to figure 4 () and the orbits drawn by following the rule given in the last
paragraph. It is helpful to realize that the pattern of crosses is always compact, in the sense that
along any line the crosses belonging to a given contour form a continuous sequence, without gaps.
"This ensures that any space between open orbits is filled with hole orbits, asin 4 (¢), and that those
hole orbits are always simple, never extended. A pattern like that in 4 (d) is precluded by the
requirement of compactness, and it may be verified by attempting to construct counter examples
that a hole orbit cannot be enclosed within an extended orbit. As ¢ is increased, the open orbits
draw closer and contain less hole orbits until in the end they contain none. At the very point where

(6)

Figure 5. Illustrating sinuosity, y. In (a) ¥y = 1, in () ¥ is close to &.

4

it is no longer possible to produce the four crosses on a square needed to define a hole orbit, the
possibility arises of the contour missing both the top right and the bottom left corners of what
would otherwise be a hole orbit, as in 4(¢). When this happens the orbit terminates. Since in
irrational directions the B contour runs through every point in the unit cell, the disappearance of
the last hole orbit automatically signals the end of the open orbits also. Hence if the four necks
which in principle are different are labelled as in 4 (f), the boundary of the open orbit region is
defined by the condition:

P+ Py =ky+kytan ¢, (13)

It is quite a good approximation to take P,+ Py as 2p,/0cos¢, where p, is the value of
p for B planes normal to the symmetry axis itself, i.e. 0.108 for [100] and 0.147 for [110]. Then for
example, the value of 0 at the boundary around [100] is roughly given by the expression
0, = 0.1524 sec (¢ — 4n). Similar approximations apply to the other symmetry directions and,
although they are not normally used in the actual computations, they serve to explain why the
boundary lines shown in figure 1 are very nearly straight.

The direction in which the spine of a highly extended orbit lies is clearly the line of the B
contour, and the quantity %, defined as the unit length measured along the spine, is &, sec ¢. It
is also necessary to introduce the idea of sinuosity. The most economical orbit running in a given
direction, ¢, is a simple chain without side arms, as in figure 5 (a) ; on each row of the lattice there

48 Vol. 291. A.
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578 SIR BRIAN PIPPARD

is one cross only, and the number of units making up the chain is just the number of rows it covers.
Now each extra cross, lying as it must next to an existing cross, adds one more unit to the chain,
as a side arm. It follows that the sinuosity, vy, defined as the ratio of the actual number of units in
a chain of given overall length to the minimum needed, takes the same value for a long chain as
the average number of crosses per line, which is (P, + P, + P, + Pa) /2k,. Since P, + P, is always
very close to P+ Py, a good approximation follows from (13) for the open orbits at the boundary
and the highly extended orbits just outside,

v = 1+ (ky/k;) tan ¢. (14)

Near [100], when ¢ = 20°, ¥ = 1.36, and this case is illustrated in figure 5 (5).

FIcure 6. Sections of periodically extended Fermi surface in the vicinity of [111]. In () only one actual section is
shaded, and the rest are schematized as in figure 4; (b) is an ideal orbit having y = 1, while (¢) shows a
typical normal form with ¥ = %, and the termination of an extended orbit.

Around [111] a modified pattern obtains, the relevant lattice of neck centres having the
hexagonal structure shown in figure 6, with a neck spacing of 4/2 ,and a layer spacing k; of 1/,/3.
The hole orbits are hexagonal and exist only so long as the P lines on opposite sides of the hexagon
meet. The most economical open orbit is produced by a chain of triangles, when there is one
cross per row, and as with the other directions v is the average number of crosses per row. At the
boundary of the open orbit zone P = /2 and the normal pattern of crosses is an alternation of one
and two per row, giving a value of § to y.

At this point, before proceeding to the detailed enumeration of orbits, it is convenient to break
off the argument to derive certain results that will be required later.

TaE FERMI SURFACE AND THE VALUE OF p

In Halse’s (1969) representation of the Fermi surface of copper the necks are remarkably close
in form to hyperboloids of revolution with [111] as axes. A (110) section is shown in figure 7
together with points lying on the hyperboloid

46(x%+y?) —116.52% = 1. (15)

When B lies 9° from [100] the B planes that just cut the neck lie as shown, 24 part. This case is
almost the worst encountered, in the sense that the tangent points of almost all other B planes of
importance lie even closer to the ¥, y plane. The hyperbolic approximation is clearly very good
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for the present purpose. It is a simple exercise in coordinate geometry to show from (15) that if
¢ is the angle between B and the axis of the neck, then

p = 0.1474(1 — 1.395 cos?e) 3. (16)
For B near [100], 0 and ¢ being defined as in figure 1,
cose = (2)%sin0 cos (¢y— @) + (3)tcos 0, (17)
(11
z
(100] B
\ 0.2
¢ /
0.2
| /
—0.2
o /

Ficure 7. Geometry of a neck section, treated as a figure of revolution
about the vertical [111] axis.

(a)

Ficure 8. Electron and hole orbit areas; (¢) for [100] and
[110] sections, (b) for [111] section.

with ¢, taking the values =, $n, 7 and Zn for necks a, b, cand d. For B near [110], the necks that
matter have axes normal to [110] and nearly normal to B. If ¢ is measured from the (100) plane
and 0 from the [110] axis, then

cos€ = sin 0 cos (P, + @), (18)

with cot ¢, equal to 4/2, and the positive sign applying to necks b and d, the negative to a and c.
For B near [111], ¢ is measured from a (110) plane and

cose = ¥&sin 0 cos (Py— @) + % cos 0, (19)
where ¢, = 0 or + 2m.

Also required are the areas of various orbits since, as will be seen, they play a part in deter-
mining the Hall deficit, Ao, Since this is usually rather small, great accuracy is not needed, and
the areas have been found by drawing sections and counting squares. The tabulations of Powell

48-2
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Ow

(8)

Ficure 9. Periodic open orbit; (@) section of Fermi surface by plane normal to B,
(b) orbits in the B plane divided into identical units.

2r B
D E F
A
C
4, 1=
A
\—B
] | | 1
0 20 40 60 80

angle from [100]

Ficure 10. Variation with field direction of 4,, the unit area of periodic open orbits. Note that there are two
different open orbits in the (110) plane. The letters relate to figure 1.

(1966) have been particularly valuable here. For neck sections in symmetry directions the areas
are defined as in figure 8. It matters little in an extended or open orbit how many of the necks of
the shaded electron orbit represent connections in the chain and how many are not cut: the area
4, as shown is accurate enough for both. The corresponding hole orbit has area 4,, and since the
whole plane may be tesselated by use of both it is easy to see that

A, + 4, = 2 for a [100] section and 2./2 for a [110] section,]\ (20)
and 24, + 4, = 43 for a [111] section. J
The actual magnitudes are as follows:
[100]: 4, = 1.22, A, = 0.78,
[110]: 4, = 2.05, A, = 0.78, (21)
[111]: 4, = 1.71, A, = 3.51.
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When B lies in a symmetry plane so that the B plane generates periodic open orbits by cutting
two necks, as for example in figure 9, the area of each unit in the resulting chain varies with 6 and
must be known, though again with no great accuracy, for Ag,,. For B lying in the two planes
(100) and (110) the variation of 4, over the angular ranges needed is shown in figure 10; in the
(111) plane the range of 0 is small and 4, is very nearly constant at a value of 1.89.

CONDUCTIVITY DUE TO EXTENDED AND OPEN ORBITS

Stachowiak (1971) has given an expression for the conductivity along an extended orbit, and
in this section his result is shown to be more generally valid than his model suggests, and the Hall
conductivity is also derived. A convenient starting point is the expression for o; in terms of the
effective path L; (Pippard 1968); if dS; is an element of the Fermi surface, and if an electron at
this point travels on the average a vector distance L; before its motion is randomized by collisions,
then

0y = (¢2]4n%) ff L,dS;. (22)

This expression is valid in the presence of a uniform magnetic field.

>

»n

4

<«
=
,_L\"

n

o

TFicure 11. Illustrating calculation of extended orbit conductivity.

It should be noted that until the very end of this section conventional units are used for £ space.
When section of the Fermi surface by a B plane generates an extended orbit, a typical electron
moves round the orbit at a more or less regular speed in £ space, taking time 27 /w. to accomplish
each unit in the chain. In real space it describes a similar orbit so far as the projection on a plane
normal to B is concerned, but scaled by a factor % /¢ B. When the orbit is highly extended the fine
details of its motion are of little consequence compared with the general motion, and it is legiti-
mate to replace the real orbit by a thin rectangle of the same length, provided allowance is made
for sinuosity. Thus an extended orbit which in its most economical form would consist of N simple
orbits linked in a chain, but with (y — 1) N extra units attached roughly evenly along it, would be
replaced by a rectangle of the same overall length, K;, around which the electrons would travel
atsuch a speed as to cause them to make a complete circuit in time 2y N/wc. The width, K,, of the
rectangle should be chosen so that the area K, K, is the same as that of the real orbit, i.e. yNA4,;
this choice of K, ensures that the high-field limit of o, is correctly derived.

We evaluate (22) by first finding the average value of L; for electrons on one long side of the
rectangle. Imagine a cluster of electrons evenly distributed along the side, and moving steadily
around it, so that the path of the centroid, as a function of time, is a succession of parabolas for
movement along the length, and a sawtooth for movement across the width, as shown in figure 11.
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582 SIR BRIAN PIPPARD

In real space the displacements are turned through 3n and scaled by % /eB. Collisions are taken
into account by supposing each electron, on suffering a catastrophic collision, to stop dead at that
point, and Z; is the ultimate vector position of the centroid after all have collided. Consider the
first half-cycle until the moment when A4, returns to zero, during which time all but a fraction
exp (—nyN/w.T) suffer collisions. In an interval d¢ a fraction exp (—£/7) dt/7 of the electrons
are stopped with displacements 4; = (¢ —wct?/nyN) wc Ky /nyN, A, = wcKyt/nyN, and the
centroid of the whole group is readily calculated to lie at (4{V, A{"), where

AP = (cothz—z1) K, /2z (23)
and AP = 1K, — 1K,(coth z —z-1), (24)
z being written for 1y N/2w.7. In successive half cycles the centroids of scattered electrons are
given by the same expressions, except for sign reversal in 4{" and in the second term of A{". The

fraction scattered in the #th half cycle is e2#—D2(1 — e~22), and the ultimate position of the cen-
troid of all particles is found by summing geometric series:

Ay = (1—e2) AP E‘, (=1)ne2m* = (1 -z 'tanhz) K, /2z
0

and Ay = (3K,/z) tanh z.
Translated into real space by scaling and rotating, the mean value of L, is

L, = iK,(1—z'tanhz)/2¢Bz (25)
and L, = (fiK,/2¢Bz) tanh z. (26)

In the present applications we imagine £ space sliced, normal to B, into sections of thickness 8,
and a given orbit in such a section contributes to the conductivity an amount that follows directly

from (22) by writing § L;dS; as 2L, K; 6. The quantity that we have designated o, elsewhere, the
conductivity along the easy direction, is o;, and therefore
oy = eK36(1 —z 1 tanh z) /4n3Bz = wi7%k} §(z — tanh z) [n5y2B, (27)
since &k, = K;/N. Further
0y = (eK, K,0/4n%Bz) tanh z. (28)

It will be noted that since K; K,8/4n3 is the number of electrons per unit volume, 7,, contained in
the orbit, then at large values of w7, as z tends to zero, oy, becomes n,¢/ B, the standard high
field limit for the Hall conductivity. Hence 1 —z~!tanhz is the fractional deficit of the Hall
conductivity from this limit, i.e. Aoy,/0y, and is closely related to o as given by (27):

Aoy oy = Kyz /Ky = 1y24, /20, Tk (29)

For highly extended or open orbits, when N and z become large, the fractional Hall deficit
increases to unity (open orbits have no Hall conductivity) and o, tends to Nek?dw.T/2n%yB,
independent of B (since w¢ oc B) and proportional to the orbit length.

Finally the results may be translated into the units used elsewhere in this paper, with the
distance between neck centres taken as the unit of £; then (27) takes the form:

oy = 2037%2 80y (z — tanh z) [n%y2, (30)

while o, is derived from it by use of (29), which is unaltered.
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ENUMERATION OF ORBITS
(@) Periodic extended orbits

When (0, ¢) lies outside the shaded areas of figure 1, all orbits are closed and electron-like, but
just outside some are very long and dominate the conductivity. Two types of highly extended
orbit have to be considered. First those lying near the high symmetry planes which we shall call
periodic extended orbits, since they are finite versions of the periodic open orbits found exactly on
the high symmetry planes, such as that shown in figure 9; and secondly those lying near the
boundary of the shaded areas which we shall call aperiodic extended orbits, since inside the
boundary the open orbits are aperiodic in character. The former are readily understood from
figure 4(a) which refers to an orientation near the (100) plane. Exactly on the plane, where
¢ = 0, the contour of the B plane is strictly vertical and can intersect an unlimited number of
P lines to generate a periodic open orbit. In this case there are two different open orbits, formed
by alternate intersection of the necks a and d, and of the necks b and c. When ¢ is non-zero but
small it is good enough to take F, = Py and P, = P, asin the (100) planeitself, and the lengths of
the extended orbits are clearly 2F, /¢ and 2P,/ units; all other orbits present are short, no more
than one or two units. Let us overlook for the moment the presence of highly extended orbits of
two different lengths at each orientation of B, and suppose that all have the same length, 2P$~1,
or 2p¢—1 cosec 0. This fixes the valueof K, tobe inserted in (27) and (28). The number of extended
orbits isfound by imagining a single replica of the Fermi surface sectioned into slices of thickness 0.
Since there are 4 necks, each of thickness 2p measured normal to the slices, the necks are cut 8p/8
times. Now each extended orbit is of length 2p¢—* cosec & and involves 2p¢—1 cosec & necks, from
from which it follows that there are 4¢)d~1sin 0 separate orbits. Multiplying (30) by this factor,
and putting k£, =y = 1 and z = (np/wc7¢) cosec 6, we have that

o, = 8weToy p(1 —z7 tanh z) /x.

This can be cast in a convenient standard form:

oy = 04(0) [1 ~2 tanh (g)] | (31)

in which 0;(0) = 8w¢Toip/n and is the conductivity along the open orbit direction when B lies
in the (100) plane; ¢ = ¢sin 0 and is the angular distance from the (100) plane measured along
the great circle; & = np/(w.7). Hence, by use of (29), the Hall deficit may be derived:

Aoy = 4pA, oy [1 —-% tanh (g)] , (32)
where 4, is given by figure 10.

In deriving (81) for Blying in the (100) plane we ignored the distinction between the two pairs
of necks, and strictly (31) should be the sum of two similar terms, with o, (0) equal to 4w 7oy p, /7
or 4weToypp/m and « = np, y/(weT). This adds very considerably to the labour of computing
average conductivities, since the relative weight of each term depends not only on 6 but, through
weT,on B. The extended orbits in question, however, contribute only about 12 9%, to @, and it was
therefore decided to simplify the process by taking a suitable average. To give the correct value of
0,(0) and hence get the best match for those most important crystallites containing highly
extended orbits, p in 0(0) was taken as }(p,+p,); and since the Ziman approximation,
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584 SIR BRIAN PIPPARD

T, = {04), 1s not too bad it was decided to choose a so that fa‘l d¢ was correctly matched.
Now

fw o, de = al(O)fw (z—tanhz) dz/z% = 0.852a0,(0), (33)
0 0

and the match was effected by taking a0, (0) as the mean of the two values; in other words, # was
taken as (p2+p%)/(pa + pv) in calculating a.

This problem does not arise with the other periodic extended orbits, for which the form (31)
applies directly, though the details of o, (0) and « are different. It is helpful to imagine the (100)
plane periodic open orbits to be generated by impaling the periodically extended Fermi surface
on a B arrow running through two nearest neighbour necks. A plane containing this arrow then
generates the open orbit sections. For the (110) plane the arrow must run through next nearest
neighbouring necks, while for the (111) plane it runs through opposite necks. In figure 1 the
range of @ between A and B represents the angle through which the surface can be turned on the
(100) arrow without generating hole orbits; these of course lie within the shaded regions round
[100] and [110] and are dealt with separately. On the (110) arrow there are two relevant ranges
of 0, represented by CD and EF, while on the (111) arrow itis GH that counts. It should be noted
that when counting orbits in the basic triangle of the diagram, the periodic extended orbits must
be taken as lying on one side only of the boundary lines AB, CD and EF, but on both sides of the
internal line GH.

For the (110)-orbits we have ¢ = 4 and 6 is measured from [100]. Thus CD is the range of ¢
between 8.82° and 48.56°, while EF runs from 60.90° to 73.25° along the same great circles.
Now %, = /2 and the main spine of the extended orbit involves only necks b and d; if necksa and ¢
play a part, it is to increase the sinuosity. The counting of orbits proceeds as before, but the
number is halved because only half the necks are involved, and multiplied by 4/2 because the
longer k, means that fewer necks are needed for an orbit of given length. Hence zis changed to
nyp/2weTe, and (31) applies with the assignments as follows:

01(0) = 8weTrop/ny and a = wyp/s2w,T. (34)
Also Aoy = 2ypA, o [1 -g tanh (g)] (35)

The value of y needs discussion. At the boundary of the open orbit zone round [100], y = 2
according to (14). As @ is increased, however, and P becomes smaller, the average number of
necks cut in each row decreases; moreover, some of the cuttings do not increase y but belong to
isolated two-unit orbits of no account. Since the matter is of minor importance only, we merely
state the result of analysis, that as 6 goes from 8.8° to 14.3° y fallslinearly from 2 to 1.31 and then,
between 14.3° and 20.8° falls with a different slope to unity, where it remains.

Next, the periodic extended orbits around the (111) plane for which %, = 4/3 and to the spine
of which only one neck contributes. Compared with the (100) plane, the number of orbits is
multiplied by }4/3, so that

04,(0) = 6weTopp/ny and o = nyp/\3w.r. (36)
Also Aoy = ypA. oy [1 —g tanh (g)] (37)

Around the great circle from H to G is an arc of 19.65°; in the first 9.5° y remains at unity, and
then rises linearly to 2 at G.
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Having cast o, into a convenient standard form we may proceed to evaluate the contribution
of periodic extended orbits to the averages P,, and AP, occurring in (11) and (12). The normalized
statistical weight of an element of solid angle (df, de) is 12 dfde/n when the basic triangle of
figure 1 defines the domain of integration; when w7 is large, so that only regions near the
boundary contribute significantly, we have as the contribution of these regions

P,, = ln?_fdof‘” 016 (T + A),
0

and AP, = -11-? f do f 0°° Aoy de/ (@, + Aay).

Now define: oy = 2104(0) /wcToy,
S = AweT0 /215,
H = }4.7*/K,
y =80y = 20(0) /Ty

T

Y(y) = 1.174J‘000 dz/[z%(y + (1 —z~'tanh z)~1)].

1

Ficure 12. The functions Y(y) and Y'(y).

Then on substituting for o, in the standard form (31) we have for the contributions of the periodic
extended orbits
P,

xr = O-IIIA/EIL‘w and APwy = 21'50'1[ IB/(l)c T(—fmw: (38)

where I, = f pp2Ydo, Iy = f Hpp2Yd0, and B is a numerical factor equal to 26.03 for the (100)

zone, 18.41 for the (110) zone and 22.54 for the (111) zone. The quantities %, o, and H are deter-
mined by the Fermi surface geometry alone, and vary with 6, while y in addition is determined by
the sample and magnetic field strength through the multiplier S, which is independent of 0. The
function Y(y) is shown in figure 12.

(b) Aperiodic extended orbits

This disposes of the most important periodic extended orbits, but leaves a residual problem of
some difficulty. In principle the impalement of two necks need not be limited to necks close
enough to lie within a single Brillouin zone. Any two necks on the periodically extended Fermi
surface may generate a zone on which periodic open orbits lie, flanked by highly extended orbits.

49 Vol. 291. A.
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Measurements on single crystals (Klauder ¢t al. 1966) show clearly how these zones extend, in the
form oflines radiating from the symmetry points, into the central region of figure 1 where we have
shown no open or highly extended orbits. Figure 13 is taken from their paper; the longest spikes
belong to the zones of lowest rational indices. It would not be merely tedious to enumerate these
zones systematically and take account of their associated regions of exceptional conductivity:
it would be hard to ensure that one neither omitted some regions nor doubly counted some others.

8
30°% 5 &
/ o
P
257 3
/
200 &0 »
~N o 4
S /
S
15° A -2
10k PN
A
\ .
50 ?)“5 __‘\'0
5L

[1-T0] [331] R221]

Ficure 13. Higher order periodic open orbit zones around [110]
(from Klauder et al. 1966, figure 9).

Ficure 14. Replacement of P lines by targets.

The way we have chosen to circumvent this problem may seem contrived, but some measure of
empirical justification is possible, based on Fickett’s (1972) observation that the resistance of a
very pure sample in a strong field is not greatly changed by raising the temperature to 15 K, even
though this introduces a considerable amount of small angle phonon scattering and markedly
alters the magnetoresistance of a single crystal (Pacher 1974). We shall therefore proceed on the
assumption that small angle scattering is present and make use of the simplification permitted by
statistical averaging.

Just outside the boundary of an open-orbit zone the condition for achieving a hole orbit,
illustrated in figure 4 (f), fails for a contour that runs through without cutting the P lines at
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necks b and d; this is the only terminal pattern very close to the boundary where the highly
extended orbits occur. It is now convenient to replace the P line pattern by a short ‘ target’ in
each alternate cell of the pattern, the length of the target, g, being just the gap,

ky+kytan ¢ — (P + Pa)

according to (13), within which the contour must lie to cause the orbit to terminate. This is
illustrated in figure 14. A contour running across this array of targets at an irrational angle will be
dissected into a variety of lengths and only a very simple computation is needed to draw up a
histogram of orbit lengths to be found in any given case. A few trials reveal the nature of the
resulting problem. With targets of length 0.1 the mean orbit length is 20 units, but three choices of
¢ lying within 4° produced orbit lengths as given below, with percentage of their occurrence
in brackets:

tan ¢ = 0.5567, ¢ =29.106°: 122 (2.6%) 113 (7.7%) 9 (89.7 %)
0.5619, 29.332°: 32 (40.3%) 23 (20.8%) 9 (38.99%)
0.5667, 29.540°: 37 (1 %) 23 (66 %) 14 (33 %).

The first row shows highly extended orbits separated by rather short orbits, and is to be under-
stood as the consequence of tan ¢ lying close to a rational fraction of low order, §, which would
produce a spike in figure 13, though it would be hardly long enough to discover experimentally;
exactly at this value of ¢ (29.055°) there would be open orbits, and in their vicinity would be
found highly extended orbits like those in the top row. The second row shows what happens even
closer to a rational direction of rather higher order, ¥, while the third is almost exactly on the
direction of order %, yet neither gives a hint of open orbits close at hand. This is because there is
no unobstructed path between targets in these rational directions. It is, indeed, easy to show that
if tan ¢ = n/m, n and m being either both even or both odd (but otherwise having no common
factor), a periodic open orbit exists only if the target length is less than 2k, /n or 2k, /m, whichever
is the smaller. In the present case the three values of ¢ lie between the spikes defined by § (0.5555)
and 1} (0.5789), and one would have to move closer to the open orbit boundary to find any
intermediate spikes. The picture that emerges is of a dense thicket of very short spikes extending
from the open orbit boundary, and thinning out progressively at greater distances. It is in the
densely packed region that small angle scattering may be invoked to circumvent the problem of
taking averages over so wildly varying a function.

An open orbit in a direction of high rational order, depending as it does on the targets being
very short, is acutely sensitive to small angle scattering, which causes the representative point of
the electron in £ space to leave the plane normal to B, and thus to miss a neck it should have gone
across, or vice versa. Itis asif the contour determining which necks are cut were slightly jagged or,
what comes to the same thing, as if the contour were straight but the targets were undergoing
Brownian motion. Which targets are hit by the line is then subject to statistical variation, and in
most directions of the contour it is so delicate a matter to thread through them in pursuit of a
highly extended orbit that only a little Brownian motion is needed to randomise the behaviour
almost perfectly. It is this model that we take to be empirically justified by the observation that
the amount of phonon scattering matters little: almost any is enough to produce randomization.

The calculation of the conductivity now becomes straightforward for, as in elementary kinetic
theory, the distribution of orbit lengths becomes exponential, with a mean length of N units,

49-2
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1/ N being g/2k,, the probability that the contour hits a target as it crosses any one row. The
number A°(N) of orbits having length N is given by the expression

g%sin
k3kyk, o
the pre-exponential factor being determined by the requirement that the total length of the
orbits in an area 4/8 of the B plane is the overall length of the contour, 4sin #/ky0. Combining
this with (30) we have for the conductivity along the extended orbit direction

71 = 7y(0) [ pr(e—tanh 2) eedz = 0,(0) £ (1), (40)

in which g = gwe7/nyk; and 0,(0) = 4wk, 0y sin 0 sec ¢ /nyks,.
At the open orbit boundary, where 0 = 6,,g = 0; when w7 is large, asg increases on moving

N (N) = coNTak, (39)

away from the boundary at constant ¢, o; decreases rapidly from o(0). It is then appropriate to
write p as g'wcre/nyk,, where € = 0—0, and g’ is the readily computed value of dg/d6 at the
boundary. The contribution to P,, of a sector between ¢ and ¢ + d¢ may now be written down,
for an element de has weight 12sin 6, d¢de/n, and hence the contribution of each aperiodic
extended orbit zone is cast in the same form as (38), with the following substitutions:

pp? is replaced by 26.03 &, k,sin® 0y sec @ /ky o',

@ 41
Y is replaced by Y'(y), defined as O.587f dpe/[y+1/f(1)], (+1)
0

and the integral is taken over ¢ within the range lying inside the basic triangle, i.e. im round
[100] and }=n round [110]. The new function Y” is not very different from Y, as may be seen from
figure 12, but the difference is enough to be taken seriously, even though the validity of the
derivation is questionable. For the zones around [100] and [110], £, %, /k3 = 1; the zone around
[111] needs special treatment to provide the result in the same form.

Around [111], as already discussed with reference to figure 6, an extended orbit is terminated
if the contour passes between the P lines belonging to opposite points of a hexagon. The targets
thus form a triangular net of spacing 2./2, with g equal to 2(,/2 — P), and the behaviour is the same
as for a rectangular net having k; = /2, k, = 4/6; successive layers of necks are 1/,/3 apart, so that
kyky/ks = 6. The range of ¢ within the triangle is 7, but because of symmetry only half this need
be taken and the resulting integral doubled, to give a contribution to P, of the standard form as

n (41), but with the coefficient 26.03 replaced by 312.4. It might be thought that in consequence
these orbits would contribute strongly, but the presence in g’ of cosec 0, causes fp* to vary as
sin? 0, and the small values of 6, around [111] result in a relatively minor contribution from this
source.

For the contribution of all these aperiodic extended orbits to AP,,, 4, has been assigned the
value for the central neck section when B lies along the relevant symmetry axis, as given in (21).

OPEN AND HOLE ORBITS

Around the symmetry directions, when 6 < 6,, hole orbits and open orbits are present, the
former, not being extended, contributing virtually nothing to o, but having importance in 40,
while the latter contribute to both. Let us consider how the length of the P lines alters as we
proceed, at constant ¢, from 0, towards the symmetry point where & vanishes. Around [100] there

are 4 values of P, different at each corner of a square in figure 4, though all must converge to the
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same value when ¢ = 0. To a good approximation, since 6 is small and p does not change rapidly,
we may write each P, i.e. p cosec 0 sec @, in the form (p,/0 + p') sec ¢, in which only the second term,
representing dp/d0, is different for each corner, and this is independent of 6. Consequently, as
the P lines increase in length with decrease of 0, the differences between them stay constant, and
therefore the pattern of crosses at the sides of the hole orbit region remains roughly the same.
Since this pattern determines the sinuosity of the open orbits, we take y to be independent of 0,
fixed only by ¢ according to (14). Since the mean value of p’ is zero, the mean length of the
Plines oc 1/6 and the average number of crosses per line is y0,/6, of which y are taken up by open
orbits and y(6,/0 — 1) by hole orbits. The contribution of open orbits to o, varies with 6 only
insofar as the spacing of contours varies as 1 /6, and hence the total number of electrons associated
with open orbits is proportional to §. The hole orbits contribute to A, through y6,/6, a constant
term and, through —1v, a negative term proportional to &; these two together vanish at 6,, but
there is still a contribution to the Hall deficit from electrons moving on open orbits. All that is
needed is to determine o and o7, at the symmetry point and at 6,, and to interpolate linearly
between them. At 6, we already have that oy = 0(0) and o, = Ho(0), while at the symmetry
points the geometry of the Fermi surface determines the proportion of electrons in hole orbits,
being simply the proportion in the slices defined by the necks.

At[100], if the overall thickness of the neck zones, 4p in this case, is £, a volume /4, containing
electrons is converted to a volume A4y of holes, leaving 2 — A4, electrons. The electron count is
therefore reduced from 2 to 2—#h(4,+ 4n), i.e. 2—2k, and the Hall deficit is simply Aoy, or
0.43207y, according to (16) and (17). A similar argument gives £ as 2p and the deficit as /2oy,
or 0.4160y, for [110]. For [111] it must be remembered that one hexagonal hole orbit is gained
for every two triangular electron orbits lost, and the deficit is 4/3ko g, where £ is now 4p since there
are two neck zones; the resulting deficit is 0.9390y. In summary, if the Hall deficit is written as
Joom, fo = 0.432, 0.416 and 0.939 for the three principal directions.

The contribution of open orbits to £, may be written down immediately by noting that an
element (d¢, d6) has weight 120 d60d¢ /=, if sin 0 is replaced by 0 as in the rest of this calculation,
and that the value of oy is 0, (0) 6/6,. The sector d¢ thus contributes d7,,, where

xxd

AP, = (12d¢/m) [ "0200/(0+0ufy) = (120849 /m) 4= 1/y +1n (1+9) o7, (42)

y having the same meaning, Ao, (0)/@,,, as before. Once @,, has been chosen, numerical integra-
tion over ¢ round each symmetry point is straightforward, and produces contributions to P, in

the form
Pea = (1/28) [ CyZ4ly) a5, (43)

in which Zy(y) = 4y —1+In (1 +y)/y, and C = 120§ /no}. For AP,,, linear interpolation between
0 and 0, gives for Ac,, /oy the expression f, — (fy — Hoy(0)) 6/6,, and integration over 0, similar
to that for P,,, gives for the contribution of a sector d¢:
d(AF,,) = (120301d¢/1T,,) [fo(1/y ~In (L+y) /y%) = (fo— Hoy) (1/2y —1/y* +1n (1 +y) /47)],
(44)
which once more depends on the choice of @,,. The combined contributions of open and hole
orbits to AP,, may then be written

AR, = (0u/5,0) [[DZ) + EZy(0)] 45, (45)

in which D = 126] f,/no? and E = 1203(Ho, — f,) /no2.
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SUMMARY AND BASIS OF COMPUTATION

The variation of the relevant parameters round the boundary in figure 1 is shown in figure 15,
and this is the information from which P,, and AP, can be computed by use of (38), (43) and
(45), together with the modified interpretation, where appropriate, of #p% and Y given in (41).
To compute @;; the experimental conditions are summed up in the value of S, and thus the
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integrals occurring in P,, and AP, arc needed as functions of S. The computation presents no
difficulties and the results are conveniently displayed as empirical functions that fit the computed
values well enough. Thus we write

P = C’-HIA/EM:'|'IC//\S2 (46)

and ABW = O'%I /\IB/Sa:azcm + Oy ID /Szb-'mw’ (47)
in which

I, = fﬂpzyw ~ 10262 —30.91g S— (Ig S— 0.55)2+ 9.3(1g S — 0.18)%]

I - f HApPYdy ~ 10-2[22.5— 13.81g S — 0.6(1g S — 0.55)2 + 3.3(Ig S — 0.24)%]
Iy = f CyZ,dg ~ 10-252[7.35 +9.691g S — 3.52(Ig S — 0.17)?]

I = f (DZ,+EZy) dg ~ 10-2S[5.7 +8.81g S — 2.4(1g S— 0.3)3].

In I, and Iy, dyy comprises d6 for integration round the periodic orbit boundaries and d¢ for
integration round the aperiodic orbit boundaries.

To relate the parameters to the measured characteristics of copper, expressions are needed for
oy and wc7. By definition oy takes the free electron value ne/B, i.e. 1.377/Bx 1010Q-1m-1,
while for a quasi-free electron metal wc7 is just o/oy which may be written as 4.66 x 10-3BR,
in which R is the resistance ratio, py,3/p,. The values of w,7 relevant to the calculation are,
however, not the free electron values but those for electrons moving in orbits that pass near or
through the necks, and both w. and 7 may be altered by this. Considerable uncertainty must
therefore attach to the values used, since experimental evidence is scanty, and in any case 7 is
likely to differ for different samples of the same conductivity, if the scattering centres are different
in kind. Fortunately, however, the calculations are not very sensitive to the choice of w,7; in
particular, if Kohler’s rule is obeyed and the resistivity is strictly proportional to B, there is, as
will be discussed later, no dependence of resistivity on 7. This was remarked on by Fickett (1972)
whose experiments largely confirm expectation. We shall therefore introduce a coefficient a,
assumed in the first place to be the same for all orbits, though this will turn out to be too simplistic
a model; nevertheless we start by writing

weT = 4.66x 10-3BR/a, (48)

and calculate the magnetoresistance behaviour for a range of choices of a. A little information
concerning the value to be chosen for 2 may be gleaned from the longitudinal magnetoresistance,
and we shall discuss this briefly in the next section before turning to the more interesting trans-
verse effect. Before doing so, however, let us note the form of a typical Kohler plot according to
the present theory. If p,, has saturated at 2p,, and we put ¢ = 1, the logarithmic plot of figure 16
results. The broken curve at the left indicates that the theory is inapplicable when w7 is small,
for the assumption that &,, is dominated by highly extended orbits is untenable. The full curve
is the result of joining the upper portions of the theoretical curve to the experimental curve at
relatively low field strengths, and without straining produces a very nearly linear variation of
Pag With B until p,,/p is something like 150. Ultimately, of course, saturation sets in at such high
values of B that only the open orbits are left to contribute to 7,,; but this is well beyond the scope
of any experiments performed hitherto.
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592 SIR BRIAN PIPPARD

The limitations of the theory at small w7 are also revealed by the curves in figure 17 of &, /oy
and @,, /oy which, combined asin (1), yield p,,. At the left, where w7 is small, 7, fallsaway from
the free electron value as more of the extended orbits become longer than a free path and fail to
make their full contribution to the Hall conductivity. Clearly the assumption of the theory, that
only a small fraction of the electron count is lost thereby, becomes dubious as BR falls below
5000. It may also be noted in this diagram how @, /o rises when w7 islarge, since @, tends to a
constant limit set by the open orbits while oy falls as 1/B. The crossing of the two curves when
BR ~ 4 x 10* will acquire significance in the discussion of experimental results.

100~
<
g
3 10+
1 - 1 - T
10° 10* 10° 10
BR

Ficure 16. Typical logarithmic Kohler plot of computed transverse resistivity. No allowance is made for small
angle scattering. At M the tangent has unit slope. The broken curve on the left shows the failure of the
approximations at small values of w,7.

e [ O

cfog

‘_/ 0:“/0'“

|
5

|
10* 10°
BR

Ficure 17. Variation of o, and 7, for the same assumptions as for figure 16.

LONGITUDINAL MAGNETORESISTANGE

The saturation of the longitudinal resistivity at a relatively low value, as we have just assumed,
is an experimental result, with p,,(B)/p(0) rising to something between two and four times the
zero field value, depending on the samples. The effective medium theory can be readily modified
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to apply here, and the details need not be presented, only the final expression determining the
resistivity p,, of the polycrystalline sample:

<(1 +Al)/(1 +Alpzz/ﬁzz)> =1,

where A; = 21/(1 —A) and is therefore fairly small in the cases of interest, becoming smaller as
B increases. Since p,, does not range nearly so widely o, the equivalent form of Ziman’s con-
jecture is more applicable to this case, and we may take p,, to be given by({p,,), as if the current
density were uniform.

The geometrical analysis needed to estimate the saturation value of p,, for a given direction of
B is considerably more tedious than for the transverse conductivity components, and since we
need only fairly rough estimates a crude simplification will be adopted. The real Fermi surface is
replaced by a sphere, on which are marked necks subtending the same solid angle as on the real
surface. Any electron lying within a neck zone is assumed to contribute nothing to o, (Pippard
1964), while those outside the neck zones are assumed unaffected by B. Values of p,, computed in
this way vary in a quite complicated fashion as B changes direction, according as different neck
zones overlap or not. The lowest magnetoresistance occurs at [111], where the saturation value
is 1.16 times the zero field value, and the highest at @ = 20°, ¢ = 27° where the ratio is 2.8. The
mean value of the ratio is about 1.7.

This is to be compared with the value of 2.0 determined by de Launay et al. (1959) on a sample
of resistance ratio 606 prepared by casting iz vacuo, and with values ranging between 2.6 and 4
(Martin et al. 1977) on samples annealed in oxygen at a low pressure and having resistance ratios
10 times greater or more. A natural interpretation is in terms of small angle scattering which is
known to enhance the longitudinal magnetoresistance (Strom-Olsen 1967). Unfortunately one
cannot proceed unequivocally from this to the effect of small angle scattering on open and
extended orbits, since the dependence of each on the angular distribution of the scattered electrons
is very different; nevertheless certain limits may be set. The enhancement of longitudinal
magnetoresistance arises from the fact that scattering into a neck zone is as good as isotropic
scattering when B is large, but not when B is small. Thus uniform scattering into a cone of, say,
20° half angle may be highly efficacious at high fields in those orientations for which there are
plenty of neck zones, but in zero field several scattering processes may be needed to randomize the
motion. The effective value of 7 is thus reduced by a substantial factor as B increases, and the
resistance reflects this behaviour. Similarly a scattering angle of 20° is easily enough to take an
electron off an open orbit, and every scattering process will be effective. The enhancement of
magnetoresistance can in this case be taken as a fair measure of the reduction factor a in (48).
It is possible, however, that the scattering pattern has a stronger forward lobe than in this
idealized model, and such a lobe may well be effective for open orbits and less effective for
longitudinal magnetoresistance. Probably, then, we should take a as not less than the magneto-
resistance enhancement, but we have no means of estimating how much larger it might be. In
saying this, no account has been taken of . for neck orbits, but this is unlikely to differ from the
free electron value by as much as the uncertainty in 7.

The conclusion, then, is that in the sample used by de Launay et al. (1959) scattering was
probably rather close to isotropic, and « may be taken as unity or a little more, while in the
samples of Martin e al. (1977) a is at least 2 and might be considerably more. Fickett (1972) does
not record any measurement of the longitudinal effect, but his sample preparation was similar
to that of Martin et al., and the higher figures for a seem appropriate.

50 Vol. 291. A.
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As already hinted, the foregoing analysis neglects an important point, which is that small
angle scattering need not affect o, nearly as strongly as o. The Hall effect arises from the
lateral displacement of an electron, even in a highly extended orbit, as a consequence of the non-
vanishing width; thus an electron starting out on one long side of its orbit has a mean position,
taken over many revolutions, lying on the spine. Now if the electron, instead of continuing to
move in the extended orbit, is scattered through a small angle and then proceeds, as is most
probable, to move on a small electron orbit, its mean position is laterally displaced by much the
same amount. In this the behaviour differs from isotropic scattering, following which the electron
is equally likely to move in any direction so that the mean position subsequently is just the point
at which scattering occurred, with no lateral displacement. In a sample, therefore, in which the
free path, as determined by the zero-field resistivity, is long, but where there is much small angle
scattering, it is proper to assign a large value to « in calculating @,, but a value near unity in
calculating @,,. We shall start, however, by ignoring this consideration, to see how well experi-
ment and theory agree without the help of these rather imprecise speculations.

It may be significant that Fickett found Kohler’s rule to apply rather closely to measurements
made on differently prepared samples with widely differing values of R, but since the theoretical
predictions are rather insensitive to the value of @ it would be unwise to read too much into this
result. By the same token any substantial discrepancies between theory and experiment cannot be
attributed to incorrect choice of a in the computations. It is worth noting that this insensitivity
of the theory is not accidental, but follows from Kohler’s rule, itself an essentially dimensional
consequence of certain restrictions applied to the scattering processes. For the rule to be obeyed
it is only necessary that the Fermi surface geometry be constant and that variations of relaxation
time over the surface follow a fixed law, so that the difference between one sample and another is
characterized by the value of 7 at any one point on the Fermi surface, and the value of B deter-
mines w.7 for every orbit. Under these conditions the only dimensionless parameters that can be
formed are p,,(B)/p(0) and w.7, and BR is a convenient measure of w.7. From this Kohler’s

rule follows:
Pax(B)/p(0) = f(BR). (49)

Now if we suppose that every orbit contributing to p,,(B) has its value of 7 diminished by the
same factor g, and if the same @ governs the enhancement of the longitudinal magnetoresistance,
then every process that matters is such that the value of p(0) to be inserted in (49) is not the
measured value, p(0), but ap(0), and similarly R should be replaced by R/a. The modified form

of (49) is therefore as follows:
Pae(B)/p(0) = af (BR/a). (50)

On a logarithmic Kohler plot curves for different values of @ are identical in shape, but shifted
bodily along a 45° line; in particular, when ,,(B) oc B, the shift leaves the curve unchanged, so
that p,,(B)/p(0) is independent of a. If, however, the longitudinal magnetoresistance is not
governed by a, the form of the functional relationship changes; nevertheless, computation shows
only a rather slight sensitivity of the shape in this case.

COMPARISON WITH EXPERIMENT

If the resistance is strictly proportional to B, and the assumptions underlying (50) hold,
Pze(B) is determined by B alone, R and a being irrelevant. It is convenient then to compare
theory and experiment by means of the transverse resistivity itself, rather than by a Kohler plot.


http://rsta.royalsocietypublishing.org/

'\

o \
A
AL A

JA §

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Y o ¥

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MAGNETORESISTANCE OF COPPER 595

(a) The Ziman limit

If &, is allowed to increase without limit, A and S go to zero and Ziman’s conjecture is valid.
The limiting values of the integrals in (46) and (47) are as follows:

I, ~0.92, Iy~0.32 I,~0.1483 I~ 0.10S2

Hence P, ~ (0.92 +0.14wcT/27) 0y /G gy 51
and AP,, ~ (0.32 x 21 /w.T+0.10) UH/E'M.} (51)
Then, according to (11) and (12),

Toe/on =~ 0.46 +0.07w,7 /2, 59
and Gyy/om =~ 0.90—0.32 x 2n/wc1'.} (52)

In the experiments of de Launay et al. (1959) BR took values up to about 6000 where, according
to (48), we7 = 28 ifa = 1. Then 7,, /0oy = 0.77 and 7, /oy = 0.83. Hence, from (1),

ﬁmw(B) = 0.60/0'1_[ = 4:.4 X 10—11B Qm;

this is to be compared with the measured value of 3.6 x 10-1%in a field of 10T, a discrepancy of
only about 20 %,. However, when the measured value of @, is used to calculate 4, § is found to
take the value 0.82, so that y typically lies around unity, and Y (y) is nearer to 0.7 than to 1 as
implied by Ziman’s conjecture. Consequently @,, and hence p,, are overestimated by this
procedure. A further indication of the limitations of Ziman’s conjecture is provided by the
saturation value of p,(B); as @cT —> 00, Tyy/0y > 0.011w.7, compared with which @, /oy is
negligible. Then p,,(B)/p(0), which is equal to w70y p,,(B), tends to the value 90, which is less
than values that have been observed while g,,(B) is still rising almost linearly. As is already clear
from figure 186, the effective medium approximation gives considerable help here by raising the
theoretical saturation value substantially.

(b) Effective medium approximation

The theoretical results of figure 16 are presented once more in figure 18, but now as values of
Puu(B) when B = 10T; the lower values of BR, where the theory has been found wanting, are not
included. Also shown is the very slight effect of changing @ from 1 to 1.25 while keeping the same
longitudinal magnetoresistance. Scaling of the longitudinal ratio 5,,(B)/p(0) and a by the same
factor (2 as shown) simply translates the curve horizontally. If the results of Martin et al. (1977)
are typical, one might expect the measured curve for a series of samples of different R to follow
curve I when R is small, shifting towards III, or beyond, when R is large, perhaps yielding some-
thing like IV. This does, however, suppose that the same value of a applies to T, and 7,,; it is
more likely that @,, should be allowed to remain at about 0.950y, while the enhanced small
angle scattering when R is large raises ¢ and thus also prevents &, from rising. Instead of a falling
away of p,,, at high values of R, a levelling off is to be expected at some point beyond the value
achieved by de Launay et al., and probably therefore after the slight minimum shown in 7 and
and IV. The results presented by Fickett are reproduced as V, and the value obtained by de
Launay et al. fits very well on this, as indicated by the cross. It is here that theory and experiment
are as well in agreement as could be hoped, but purer samples reveal a sizeable discrepancy.

50-2
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Not only are the measured values of 5,,(B) markedly lower than predicted, but there is no sign
of a minimum, let alone a hump, as in the theoretical curves, and this is not a trivial matter. For
if the value of BG,, is fairly constant, as we have every reason to expect at these high values of
BR when it is mainly the hole orbits that contribute to the Hall deficit, it follows from (1) that
P/ B passes through a maximum of 1/(287,,) as @, rises above G,,. On the Kohler plot of
figure 16 the curve has unit gradient at this point, A/, and obviously the slope below must be
greater. This feature, which shows up as the hump in figure 18, is conspicuously absent from the
experimental Kohler plot of Fickett, whose slope is unity at a low value of w.7, where
Pxu(B)/p(0) & 3, but rises rather more slowly ever after. On the assumption that G,
cannot be far different from 0.95 o, we must conclude that, unlike the theoretical curve
of figure 17, in practice @,,/oy does not rise to cross G, /oy but if anything has fallen to about
0.4 oy when BR reaches 7 x 10% and this is lower than any value shown in the theoretical
curves of figure 17.

Pae/ (1071° Qm)
L)

10* 10°
BR

Ficure 18. Calculations of p,, as a function of BR. I, the same as for figures 16 and 17,i.e.a = 1; I, a = 1.25;
II1; @ = 2 and longitudinal magnetaresistance daubled; IV, possible curve, shifting from I to III and
beyond with increasing BR; V, experimental results of Fickett (1972). +, de Launay et al. (1959).

This discrepancy provides an excuse to draw attention to the many ways in which experimental
conditions may fail to match the idealizations of theory, so that fair comparison is difficult to
achieve. Randomness in orientation of the grains, assumed in the theory, is hardly likely to be
achieved by cold drawing followed by annealing. But even if this were achieved, we still require
that the grain size be considerably longer than the free path and at the same time considerably
smaller than the sample diameter, for the current jetting phenomenon demands many grainsin the
thickness of the sample, measured along B. To take this last point first, the experiments on thin
plates of Martin et al. (1977), with many crystallites extending right through, show that when B
is normal to the plate the magnetoresistance is considerably reduced. There is no evidence on the
intermediate situation of a few grains within the thickness, but this hardly matters in the present
case, since Fickett’s samples had grain sizes of about 0.12 mm, less than one tenth of the wire
diameter, and probably the thickness limitation was of little importance. On the other hand, this
was achieved at the cost of grains rather smaller than the electronic free path, which in his purest
samples was 0.3 mm. Since most of the scattering was almost certainly at grain boundaries, the
picture we form is of virtually no scattering within the grains, and of quite considerable trans-
parency of the boundaries, so that a typical electron would pass through two or three before being
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scattered. In passing through, the electron might suffer small angle scattering, but if it did not it
would find a position on the differently oriented Fermi surface having the same parallel com-
ponent of wavenumber. An electron on an open or extended orbit in one grain would have a very
high probability of finding itself executing a small electron orbit in the next grain, and even if it
returned to the original grain it would not be to the original orbit. In a strong field, then, the
grain boundary behaves very similarly to small angle scattering in terminating an extended orbit
so far as G, is concerned, but not for @,,. Let us apply this to a typical good sample of Fickett’s,
with R equal to 7000 and a grain size of 0.12 mm. A rough estimate suggests that an open orbit
with typical sinuosity should be assigned a free path (measured along the orbit) of 0.08 mm for
the purpose of calculating ,,; this is nearly four times less than the free path determined from R.
In figure 17, therefore, instead of taking &,, where BR = 7x 10* we should take it where
BR = 1.8x10%, i.c. 0.67 oy rather than 1.5 oy; but 7,, remains at 0.95 oy;. This change is
enough to prevent 7, from increasing beyond ,,,, and so accounts for the absence of a hump in
the experimental curve. It does not, however, go all the way, for we have seen that a value of
0.4 oy is needed for @, to get p,,, down to Fickett’s value. Figure 17 gives no hope of managing
this with any model based on grain boundary effects.

The explanation is most likely to be found in the preferred orientation of grains in the drawn
wires used by Fickett. According to Barrett & Massalski (1966) about 40 %, would have been
oriented with [100] roughly along the wire, and 60 9, with [111] along the wire. Consider those
grains having [100] exactly parallel, so that the transverse magnetic field lay in the (100) plane,
the horizontal boundary in figure 1. There is a great wealth of periodic open orbits, but they all
conduct strictly transverse to the wire, so that in spite of appearances these grains contribute very
poorly indeed to @,,; much the same goes for grains having [111] exactly parallel. I'tis only when
the principal axes are shifted from exact parallelism with the wires that the aperiodic open orbits
can play a part. It seems very reasonable, then, to suppose that the assumption of random orienta-
tion has permitted a substantial overestimate of @,,, and that Fickett’s results need not be the
cause of great concern. Without a full determination of the distribution of orientations, however,
it is hardly worth while embarking on the labour of computing values of g, for non-random
arrangements.

CONCLUSIONS

In view of the attempt to explain Fickett’s results in terms of non-random grain orientations, it
would be naive to attach too much importance to the agreement between theory and the experi-
ments of de Launay et al. It may be claimed, however, that the calculations help to dispel any
lingering doubts as to the possibility of explaining the linear magnetoresistance of polycrystalline
copper without invoking exotic mechanisms. Once it is recognized that the conductivity due to
open and extended orbits is sufficient to raise &, to a value near &,, and oy, the linearity follows
as a simple consequence of the insensitivity of g, to 7,,; moreover the effective medium theory
shows how the ultimately inevitable saturation of @,, due to the open orbits is delayed beyond the
range of any experiments so far performed. To take the matter further, to the point of numerical
agreement, demands measurements on very carefully characterized samples, and computation of
the appropriately biased averages to allow for non-randomness of orientations. This would
involve more effort, probably, than the problem deserves. A better test of the theory would be
provided by the electrodeless technique, e.g. rotating a large cylinder or sphere in a transverse
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field (see Delaney & Pippard 1972); if the sample were cast it would not be too hard to achieve
something close to a random distribution of orientations.

It is a pleasure to acknowledge the very helpful discussions I have had with Professor J. C.
Garland, and the advice and help of Mr C. M. M. Nex over computing.
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